Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization.

نویسندگان

  • Scott Roberts
  • Sonoko Narisawa
  • Dympna Harmey
  • José Luis Millán
  • Colin Farquharson
چکیده

UNLABELLED PHOSPHO1 is a phosphatase highly expressed in bone. We studied its functional involvement in mineralization through the use of novel small molecule inhibitors. PHOSPHO1 expression was present within matrix vesicles, and inhibition of enzyme action caused a decrease in the ability of matrix vesicles to calcify. INTRODUCTION The novel phosphatase, PHOSPHO1, belongs to the haloacid dehalogenase superfamily of hydrolases and is capable of cleaving phosphoethanolamine (PEA) and phosphocholine to generate inorganic phosphate. Our aims in this study were to examine the expression of PHOSPHO1 in murine mineralizing cells and matrix vesicles (MV) and to screen a series of small-molecule PHOSPHO1-specific inhibitors for their ability to pharmacologically inhibit the first step of MV-mediated mineralization. MATERIALS AND METHODS q-PCR and immunohistochemistry were used to study the expression and localization profiles of PHOSPHO1. Inhibitors of PHOSPHO1's PEA hydrolase activity were discovered using high-throughput screening of commercially available chemical libraries. To asses the efficacy of these inhibitors to inhibit MV mineralization, MVs were isolated from TNAP-deficient (Akp2(-/-)) osteoblasts and induced to calcify in their presence. RESULTS q-PCR revealed a 120-fold higher level of PHOSPHO1 expression in bone compared with a range of soft tissues. The enzyme was immunolocalized to the early hypertrophic chondrocytes of the growth plate and to osteoblasts of trabecular surfaces and infilling primary osteons of cortical bone. Isolated MVs also contained PHOSPHO1. PEA hydrolase activity was observed in sonicated MVs from Akp2(-/-) osteoblasts but not intact MVs. Inhibitors to PHOSPHO1 were identified and characterized. Lansoprazole and SCH202676 inhibited the mineralization of MVs from Akp2(-/-) osteoblasts by 56.8% and 70.7%, respectively. CONCLUSIONS The results show that PHOSPHO1 localization is restricted to mineralizing regions of bone and growth plate and that the enzyme present within MVs is in an active state, inhibition of which decreases the capacity of MVs to mineralize. These data further support our hypothesis that PHOSPHO1 plays a role in the initiation of matrix mineralization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms of Initiation of Skeletal Calcification

Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PP(i)). ...

متن کامل

Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick.

PHOSPHO1 is a bone-specific phosphatase implicated in the initiation of inorganic phosphate generation for matrix mineralization. The control of mineralization is attributed to the actions of tissue-nonspecific alkaline phosphatase (TNAP). However, matrix vesicles (MVs) containing apatite crystals are present in patients with hypophosphatasia as well as TNAP null (Akp2(-/-)) mice. It is therefo...

متن کامل

The Functional co-operativity of Tissue-Nonspecific Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal Mineralization.

Phosphatases are recognised to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evide...

متن کامل

The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization.

PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase that has previously been implicated in generating inorganic phosphate (P(i)) for matrix mineralization. In this study, we have investigated PHOSPHO1 mRNA expression during embryonic development in the chick. Whole-mount in situ hybridization indicated that PHOSPHO1 expression occurred prior to E6.5 and was initially restricted to the ...

متن کامل

Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation

The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2007